ON A LINEAR GUIDANCE GAME PROBLEM

PMM Vol. 42, No. 4, 1978, pp. 593-598
M. I. LOGINOV
(Sverdlovsk)
(Receíved November 22, 1977)

Abstract

A guidance game problem is analyzed for a linear conflict-controlled system when the game's payoff has the Imeaning of the Euclidean distance of the phase point from the origin. A certain modification is suggested for the extremal aiming rule [1], which under specific conditions quarantees one of the players a result not worse than in the corresponding program problem on maximin for the initial position. The paper relies on the idea of a position differential game, developed in [1, 2].

1. We consider a conflict-controlled system described by the vector differential equation

$$
y^{\dot{ }}=A(t) y+R(t) u-C(t) v, \quad u \in P, \quad v \in Q
$$

where y is the n -dimensional phase vector, u and v are r-dimensional controls of the first and second players, respectively, $A(t), B(t)$, and $C(t)$ are matrices of appropriate dimensions, continuous in t and P and Q are convex closed bounded sets. The game is analyzed on a specified interval $t_{0} \leqslant t \leqslant \boldsymbol{\vartheta}$ and the payoff $\gamma[\vartheta]$ is represented by the equality

$$
\gamma[\vartheta]=\left\|\{y[\vartheta]\}_{m}\right\|
$$

Here and subsequently $\|x\|$ is the Euclidean norm of vector x and $\{x\}_{m}$ is a vector composed of the first m components of vector x. The system being analyzed can be reduced by a nonsingular linear transformation to the form (see [2])

$$
\begin{equation*}
\dot{x}=B(t) u-C(t) v, \quad u \in P, \quad v \in Q \tag{1.1}
\end{equation*}
$$

where x is an m-dimensional vector, $B(t)$ and $C(t)$ are matrices continuous in t and the game's payoff has the form

$$
\begin{equation*}
\gamma[\vartheta]=\|x[\vartheta]\| \tag{1.2}
\end{equation*}
$$

In what follows it is convenient to use a system transformed to form (1.1).
The first player chooses a control $u[t] \in P$ and tries to minimize the quantity $\gamma[\vartheta]$ on the trajectories $x[t]\left(t_{0} \leqslant t \leqslant \vartheta, x\left[t_{0}\right]=x_{0}\right)$ of system (1.1),
realized under his control $u[t]\left(t_{0} \leqslant t \leqslant \vartheta\right)$ in pair with any integrable realization $v[t] \in Q$ of the second player's control. The second player has the opposing purpose and tries to maximize the quantity $\gamma[\vartheta]$ in (1.2).

The admissible strategies \mathbf{U} and \mathbf{V} of the first and second players, respectively, are specified to be convex, closed and upper semi-continuous by inclusion under a change of position by sets $U(t, x) \subset P$ and $V(t, x) \subset Q$; by motions we mean the solutions of the corresponding contingent equations. Let $\left(\gamma[\vartheta] \mid t_{0}, x_{0}, u, v\right)$ be a realization of the quantity $\gamma[\vartheta]$ (1.2), corresponding to the initial position $\left\{t_{0}, x_{0}\right\}$ under certain controls u and v.

Problem 1. Among the first player's admissible strategies \mathbf{U} find the strategy U^{*} which for any initial position guarantees the game result

$$
\left(\gamma[\vartheta] \mid t_{0}, x_{0}, \mathbf{U}^{*}, v\right) \leqslant \varepsilon_{0}\left(t_{0}, x_{0}\right)
$$

under any admisşible control method of the second player.
Problem 2. Among the second player's admissible strategies \mathbf{V} find the strategy \mathbf{V}^{*} which for any initial position $\left\{t_{0}, x_{0}\right\}$ guarantees the game result

$$
\left(\gamma[\vartheta] \mid t_{0}, x_{0}, u, \mathrm{~V}^{*}\right) \geqslant \varepsilon_{0}\left(t_{0}, x_{0}\right)
$$

under any admissible control method of the first player.
In these problems the quantity $\varepsilon_{0}\left(t_{0}, x_{0}\right)$ is the program maximin for the initial position $\left\{t_{0}, x_{0}\right\}$ and is defined by the equality [1]

$$
\begin{align*}
& \varepsilon_{0}\left(t_{0}, x_{0}\right)=\max _{\| l l l=1}\left[\int_{t_{0}}^{\vartheta} \max _{v \in Q} l^{\prime} C(t) v(t) d t-\right. \tag{1.3}\\
& \left.\quad \int_{i_{0}}^{\vartheta} \max _{u \in P} l^{\prime} B(t) u(t) d t-l^{\prime} x_{0}\right]
\end{align*}
$$

if the right-hand side of this equality is positive; otherwise, $\varepsilon_{0}\left(t_{0}, x_{0}\right)=0$. The prime denotes transposition. We assume that $\varepsilon_{0}\left(t_{0}, x_{0}\right)>0$ for the initial position $\left\{t_{0}, x_{0}\right\}$.
2. Let the following condition [2] be fulfilled: the function

$$
\begin{equation*}
x(l, t)=\max _{u \in P} l^{\prime} B(t) u-\max _{v \in Q} l^{\prime} C(t) v \tag{2.1}
\end{equation*}
$$

is convex in l for all $t \in\left[t_{0}, \vartheta\right]$ (Condition A). This is a necessary and sufficient condition for the maximum on the right-hand side of (1.3) to be achieved on a unique vector $l_{0}=l_{0}\left(t_{0}, x_{0}\right)$. In addition, when this condition is fulfilled the function $x(l, t)$ is [2.3] the support function of the convex closed set

$$
\begin{equation*}
H(t)=\bigcap_{v \in Q}\{B(t) P-C(t) v\} \tag{2,2}
\end{equation*}
$$

We shall examine the program controls $u^{0}\left(t, l_{0}\right)$ and $v^{0}\left(t, l_{0}\right), t_{0} \leqslant t \leqslant \theta$, satisfying for almost all t the maximum conditions

$$
\begin{align*}
& l_{0}{ }^{\prime} B(t) u^{\circ}\left(t, l_{0}\right)=\max _{u \in P} l_{0}^{\prime} B(t) u \tag{2.3}\\
& l_{0}{ }^{\prime} C(t) v^{\circ}\left(t, l_{0}\right)=\max _{v \in \mathbb{Q}} l_{0}{ }^{\prime} C(t) v \tag{2.4}
\end{align*}
$$

where l_{0} is that vector $l_{0}=l_{0}\left(t_{0}, x_{0}\right)$ on which the maximum on the right-hand side of (1.3) is achieved.

L e mma 1. If sets P and Q are convex and Condition A is valid, then program controls $u^{\circ}\left(t, l_{0}\right)$ and $v^{\circ}\left(t, l_{0}\right)$, measurable in t, exist and satisfy maximum conditions (2.3) and (2.4) for almost all $t \in\left[t_{0}, \vartheta\right]_{4}$ for which the inclusion

$$
\begin{equation*}
h^{\circ}\left(t, l_{0}\right)=\left\{B(t) u^{\circ}\left(t, l_{0}\right)-C(t) v^{\circ}\left(t, l_{0}\right)\right\} \in H(t) \tag{2.5}
\end{equation*}
$$

holds almost everywhere on the interval $\left[t_{0}, \vartheta\right]$.
Proof. The functions $\max _{u \in P} l^{\prime} B(t) u$ and $\max _{v \in Q} l^{\prime} C(t) v$ are support functions for the convex closed bounded sets $\{B(t) P\}$ and $\{C(t) Q\}$. Consequently, the sets $\left\{B(t) U_{1}\right\}$ and $\left\{C(t) V_{1}\right\}$ of the vectors u° an v° on which the maximum on the right hand sides of (2,2) and (2.3) is achieved when $l=l_{0}$ are the subdifferentials of the corresponding support functions at point $\cdot l_{0}$ [4]. Since function $x(l, t)$ is convex in l and is [2.3] the support function of set $H(t)$ of (2.5), its subdifferential $H_{1}(t)$ at point $l=l_{0}$ in sum with $\left\{C(t) V_{1}\right\}$ yields the set $\left\{B(t) U_{1}\right\}$. Hence follows the validity of inclusion (2.5). It remains to show that functions $u^{\circ}\left(t, l_{0}\right)$ and $v^{\circ}\left(t, l_{0}\right)$ can be chosen measurable. Indeed, the sets $\left\{B(t) U_{1}\right\},\left\{C(t) V_{1}\right\}$ and $H_{1}(t)$ are upper semi-continuous by inclusion as t varies; therefore, we can choose $[1,5]$ measurable functions $C(t) v^{\circ}\left(t, l_{0}\right) \in\left\{C(t) V_{1}\right\}$ and $h^{\circ}\left(t, l_{0}\right) \in H_{1}(t)$, and, then, $B(t) u^{\circ}\left(t, l_{0}\right)$ being the sum of two measurable functions, is measurable too.

Let us now define the first player's strategy \mathbf{U}^{*}, Suppose that some position $\{t, x[t]\}$ has been realized. On the interval $t \leqslant \tau \leqslant \boldsymbol{v}$ we choose controls $u^{\circ}\left(\cdot l_{0}\right)=u^{\circ}\left(\tau, l_{0}\right)$ and $v^{\circ}\left(\cdot l_{0}\right)=v^{\circ}\left(\tau, l_{0}\right)$ which satisfy the maximum conditions (2.3) and (2.4) for almost all $\tau \in[t, \vartheta]$ and for which inclusion (2.5) holds. We consider the motion $x\left(\tau ; t, x[t], u^{\circ}\left(\cdot l_{0}\right), v^{0}\left(\cdot l_{0}\right)\right), \tau \in[t, \vartheta]$ of system (1.1), generated by the controls $u=u^{\mathrm{c}}\left(\cdot l_{0}\right)$ and $v=v^{\circ}\left(\cdot l_{0}\right)$ under the initial condition $x\left(t ; t, x[t], u^{c}\left(\cdot l_{0}\right), v^{\circ}\left(\cdot l_{0}\right)\right)=x[t]$.

Definition 1. Let an m-dimensional vector $s(t)$ be defined by the equality

$$
\begin{equation*}
s(t)=-x\left(\vartheta ; t, x[t], u^{\circ}\left(\cdot l_{0}\right), v^{\circ}\left(\cdot l_{0}\right)\right) \tag{2.6}
\end{equation*}
$$

Then the first player's strategy \mathbf{U}^{*} is defined in the following manner:

1) if $s(t)$ is a nonzero vector for a position $\{t, x[t]\}$ then with this position we associate a set $U^{*}(t, x[t])$ of all vectors u^{*} which satisfy the maximum
condition

$$
\begin{equation*}
s^{\prime}(t) B(t) u^{*}=\max _{u \in P} s^{\prime}(t) B(t) u \tag{2.7}
\end{equation*}
$$

2) if, however, $s(t)$ is a zero vector for a position $\{t, x[t]\}_{\text {, then }}$ we assume that $U^{*}(t, x[t])=P$.

From the Cauchy formula determining $x\left(\vartheta ; t, x[t], u^{\circ}\left(\cdot l_{0}\right), v^{0}\left(\cdot l_{0}\right)\right)$ and from the results in [1] it follows that strategy U^{*} defined by conditions 1) and 2) is admissible.

Theorem 1. If sets \boldsymbol{P} and Q are convex and Conditions A is fulfilled, then the first player's strategy \mathbf{U} 娄 constructed in accord with Definition 1), guarantees him the game result $\left(\gamma[\vartheta] \mid t_{0}, x_{0}, \mathrm{U}^{*}, v\right) \leqslant \varepsilon_{0}\left(t_{0}, x_{0}\right)$ under any admissible control method of the second player.

Proof. Consider the function

$$
\varepsilon[t]=\varepsilon(t, x[t])=\left\|x\left(\vartheta ; t, x[t], u^{\circ}\left(\cdot l_{0}\right), v^{\circ}\left(\cdot l_{0}\right)\right)\right\|^{2}
$$

Strategy U^{*} is admissible and, therefore, the derivative $d \varepsilon[t] / d t$ defined by

$$
d \varepsilon[t] / d t=2 s^{\prime}(t)\left[h^{0}\left(t, l_{0}\right)-\{B(t) u[t]-C(t) v[t]\}\right]
$$

exists for almost all t. By the construction of set $H(t)$ for any admissible realization $v[t]$ we can find an admissible control $u^{(1)}(t)$ for which

$$
h^{\circ}\left(t, l_{0}\right)=\left\{B(t) u^{(1)}(t)-C(t) v[t]\right\}
$$

Therefore,

$$
d \varepsilon[t] / d t=2 s^{\prime}(t)\left\{B(t) u^{(1)}(t)-B(t) u[t]\right\}
$$

From this equality and maximum condition (2.7) it follows that when $u[t]=u^{*}$ the inequality $d \varepsilon[t] / d t \leqslant 0$ is valid for almost all t for any position $\{t, x\}$ at which $\varepsilon[t]>0$. Now taking into account that the equalities $\varepsilon\left[t_{0}\right]=\varepsilon_{0}{ }^{2}\left(t_{0}, x_{0}\right)$ and $\gamma^{2}[\theta]=\varepsilon[\theta]$ hold by the definition of the auxiliary function $\varepsilon[t]$, we conclude that the theorem's assertion is valid.

The second player's strategy V^{*}, solving Problem 2, is constructed similarly. Let the function $x(l, t)$ of (2.1), appearing in Condition A, be concave in l for each $t \in\left[t_{0}, \vartheta\right]$;then by analyzing the set

$$
G(t)=\bigcap_{u \in P}\{B(t) u-C(t) Q\}
$$

instead of set $H(t)$, we can prove a lemma similar to Lemma 1. The second player's strategy \mathbf{V}^{*} is specified by the set $V^{*}(t, x[t])$ of vectors v^{*} satisfying the maximum condition

$$
s^{\prime}(t) C(t) v^{*}=\max _{v \in Q} s^{\prime}(t) C(t) v
$$

at positions $\{t, x[t]\}$ for which $\|s(t)\| \neq 0$, while $V^{*}(t, x[t])=Q$ at positions for which $s(t)=0$. The next statement can be proved by the same plan as the proof of Theorem 1 .

Theorem 2. If sets P and Q are convex and the function $x(l, t)$ of (2.1) is concave in l for each $t \in\left[t_{0}, \vartheta\right]$, then the second player's strategy V^{*} guarantees him the game result $\left(\gamma[\vartheta] \mid t_{0}, x_{0}, u, \mathbf{V}^{*}\right) \geqslant \varepsilon_{0}\left(t_{0}, x_{0}\right)$ under any admissible control method of the first player.

Notes. 1°. Condition A can be weakened. As the proof of Theorem 1 shows, to construct the strategy \mathbf{U}^{*} solving Problem 1 it is sufficient that for the initial position $\left\{t_{0}, x_{0}\right\}$ there exist optimal program controls $u^{\circ}\left(t, l_{0}\right)$ and $v^{\circ}\left(t, l_{0}\right), t_{0} \leqslant t \leqslant \vartheta$, satisfying maximum conditions (2.3) and (2.4), for which the inclusion

$$
\{B(t) P\} \supset\{C(t) Q\}+h^{\circ}\left(t, \quad l_{0}\right)
$$

is fulfilled for almost all $t \in\left[t_{0}, \vartheta\right]_{\varepsilon}$ in this case the assumption on the convexity of sets P and Q is unessential and can be dropped.
2°. A singularity of the control method proposed, in comparison with the extremal aiming rule developed in [1], is that the vector $s(t)$ used in the definitions of the player's strategies is generally easier to compute than the corresponding vector $l^{\circ}[t]$ $=l^{\circ}(t, x[t])$ in the extremal construction. This is due to the fact that to determine the vector $l^{\circ}[t]$ it is necessary to solve the extremal problem (1.3) for each current position $\{t, x[t]\}$. Whereas to compute the vector $s(t)$ of (2.6) we need to know the solution of problem (1.3) only for the initial position $\left\{t_{0}, x_{0}\right\}$. It is clear that the result obtained is worse than when using the extremal aiming rule [1] because not all of the opponent's "errors" are taken advantage of. It should be noted that in comparison with the direct methods in game theory [6] and with the a priori stable paths [2] the control method we have proposed is more complicated but yields a better result from the view-point of one of the players. Thus, the method described above for solving Problems 1 and 2 falls inbetween the extremal aiming rule and the direct methods in differential game theory.
3°. It can be varified that the control procedure suggested for the first player takes system (1.1) into the position $\{x\}=0$ no later than at the program absorption instant $\boldsymbol{\vartheta}_{0}\left(t_{0}, x_{0}\right)$ under any admissible realization $v[t], t_{0} \leqslant t \leqslant \vartheta_{0}$ of the second player's control.
3. As an example we consider a guidance problem for a conflict-controlled material point moving along a horizontal straight line. The point's equations of motion are

$$
\begin{equation*}
x_{1}^{*}=x_{2}, \quad x_{2}{ }^{\prime}=u-v ;|u| \leqslant \mu,|v| \leqslant \nu, \quad \mu>\nu . \tag{3.1}
\end{equation*}
$$

Let the game's payoff γ estimate the distance of the phase point $x[\vartheta]$ at a specified instant ϑ from the origin $x_{1}=x_{2}=0$, i. e. .

$$
\gamma[\vartheta]=\left\{x_{1}^{2}[\vartheta]+x_{2}^{2}[\vartheta]\right\}^{1 / 2}
$$

All the hypotheses of Theorem 1 are fulfilled for system (3.1); therefore, the first player's strategy \mathbf{U}^{*} can be constructed as in Definition 1. As in [1], we select the following initial data $x_{01}=-7, x_{02}=4, t_{0}=0, \vartheta=4, \mu=2$, and $v=1$. Having made the necesssary computations, we get that $\varepsilon_{0}\left(t_{0}, x_{0}\right)=1$, the maximum on the right hand side of (1.3) is achieved on the vector $l_{0}=(-1,0)$ and the vector $s(t)$ of (2.6) is determined by the equalities

$$
\begin{aligned}
& s_{1}(t)=-x_{1}[t]-x_{2}[t](\theta-t)+1 / 2(\theta-t)^{2} \\
& s_{2}(t)=-x_{2}[t]+\forall-t
\end{aligned}
$$

The first player's strategy U^{*} is determined as follows:

1) If $s_{1}(t)(\vartheta-t)+s_{2}(t) \neq 0$ for a position $\left\{t, x_{1}[t], x_{2}[t]\right\}$ then the set U^{*} $\left(t, x_{1}[t], x_{2}[t]\right)$ consists of the single point

$$
u^{*}[t]=2 \operatorname{sign}\left\{s_{1}(t)(\vartheta-t)+s_{2}(t)\right\}
$$

2) If $s_{1}(t)(\vartheta-t)+s_{2}(t)=0$ for a position $\left\{t, x_{1}[t], x_{2}[t]\right\}$, then $U^{*}\left(t, x_{1}[t]\right.$, $\left.x_{2}[t]\right)=P, \quad$ i. e., $u^{*}[t]$ is an arbitrary quantity satisfying the inequality $-2 \leqslant$ $u^{*}[t] \leqslant 2$; to be specific we assume that $u^{*}[t]=0$ in this case.

The realizations of the motions dictated by the different choices of strategies of the first and second players were calculated on a computer and are shown in Fig. 1. Curve 1 shows the phase trajectory generated by the first player's optimal extremal strategy $\mathbf{U}^{\text {c }}$ [1], under the condition that the second player selects the control $v \equiv 0$. Curve 2 shows the phase trajectory corresponding to the first player's strategy U^{*} described in the present article, when the second player's control is $v \equiv 0$. As expected, we see that the magnitude $\gamma[\vartheta]=0$ is realized in the first case, while a large value of payoff $\quad \gamma[\vartheta]$, equal to 0.258 , is realized in the second case. Curve 3 is generated by the pair $\left\{U^{\circ}, V^{\circ}\right\}$ of optimal extremal strategies [1]; the motion corresponding to the strategy pair $\left\{\mathbf{U}^{*}, \mathbf{V}^{\circ}\right\}$ takes place along this same curve. We note, further, that the a priori stable path [2] constructed for this example also lies along curve 3.

The author thanks E. G. Al'brekht and A. I. Subbotin for discussions on the work and for critical remarks.

REFERENCES

1. Krasovskii, N. N., Game Problems on the Contact of Motions. Moscow, "Nauka", 1970.
2. Krasovskii, N. N. and Subbotin, A. I., Position Differential Games. Moscow, "Nauka", 1974.
3. Rockafellar, R. T., Convex Analysis. Princeton, N.J., Princeton Univ. Press, 1970.
4. Pshenichnyi, B. N. , Necessary Conditions for an Extremum. Moscow, "Nauka", 1969.
5. Filippov, A. F., Differential equations with a discontinuous right-hand side. Mat. Sb., Vol. 51(93), No. 1, 1960.
6. Pontriagin, L. S., On linear differential games. 2. Dokl. Akad. Nauk SSSR, Vol. 175, No. 4, 1967.
